q-form field and Hodge duality on brane

Yu-Xiao Liu (刘玉孝)

Lanzhou University (兰州大学)

With C.E. Fu, H. Guo and S.L. Zhang [PRD 93 (2016) 064007]

4th International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry

December 29-31, 2016, NTHU, Hsinchu, Taiwan

December 31, 2016

- 4 同 1 4 日 1 4 日

Introduction and Motivation Localiztion and Hodge duality for q- form field on brane Conclusion

Outline

Introduction and Motivation

- *p*-brane, *q*-form field, localization
- Hodge duality in bulk
- Motivation
- 2 Localiztion and Hodge duality for q-form field on brane
 - Localiztion for *q*-form field on brane
 - Massless KK modes and Hodge duality on the brane
 - Massive KK modes and a new duality

3 Conclusion

A 3 3 4 4

Introduction and Motivation

Localiztion and Hodge duality for q- form field on brane Conclusion

p-brane, *q*-form field, localization Hodge duality in bulk Motivation

Introduction and Motivation

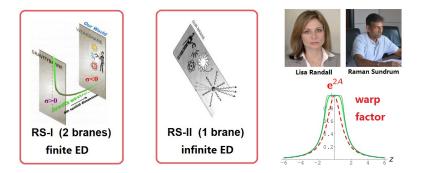
- ♦ *p*-brane, *q*-form field, localization
- Hodge duality in bulk
- Motivation

- 4 同 6 4 日 6 4 日 6

Introduction and Motivation ocaliztion and Hodge duality for q-form field on brane Conclusion *p*-brane, *q*-form field, localization Hodge duality in bulk Motivation

• p-brane (in D = (p+2) dimensions)

Randall-Sundrum (RS) brnae scenario (Warped extra dimesnion)



The line element for a Randall-Sundrum brane is

$$ds^{2} = \mathbf{e}^{2A(y)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^{2} = \mathbf{e}^{2A(z)} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} + dz^{2} \right)_{\Xi} \left(\frac{1}{\Xi} \right)$$
Yu-Xiao Liu (刘玉孝)
a form field and Hodge duality on brane

Introduction and Motivation	<i>p</i> -brane, <i>q</i> -form field, localization
Localiztion and Hodge duality for q —form field on brane	Hodge duality in bulk
Conclusion	Motivation

Localization of gravity on brane

- Recover GR (Newtonian potential) on brane (massless graviton)
- Correction to Newtonian potential (massive gravitons)

Localization of bulk matter fields on brane

- Realize the Standard model on brane (massless modes)
- Probe extra dimensions (massive KK particles)

 \blacklozenge *q*-form field $X_{M_1M_2\cdots M_q}$

A q-form field $X_{M_1M_2\cdots M_q}$ is a totally antisymmetric field

$$X_{M_1M_2...M_q} = X_{[M_1M_2...M_q]}.$$
 (X_[q]) (2)

Its field strength is expressed as

$$Y_{M_1M_2\cdots M_{q+1}} = \partial_{[M_1}X_{M_2\cdots M_{q+1}}]. \ (Y_{[q+1]} = dX_{[q]})$$
(3)

Examples:

- 0-form: Scalar field ϕ
- 1-form: Vector field A_M , $(-q \int dx^M A_M)^{-1}$
- 2-form: Kalb-Ramond field² B_{MN} , $(-\int dx^M dx^N B_{MN})^3$

¹The action for a charged particle moving in an electromagnetic potential

 2 The KR field (NS-NS B-field) appears, together with the metric tensor and dilaton, as a set of massless excitations of a closed string.

³The action for a string coupled to the Kalb-Ramond field. This term in the action implies that the fundamental string of string theory is a source of the NS-NS B-field, much like charged particles are sources of the electromagnetic field.

Introduction and Motivation Localiztion and Hodge duality for *q*-form field on brane Conclusion

> • Hodge duality in bulk: q-form $\Leftrightarrow (p-q)$ -form in p+2 dimensions

A massless q-form field is dual to a (p-q)-form field:

$$\sqrt{-g} \ \widetilde{Y}^{M_1 \cdots M_{p-q+1}} = \frac{1}{(q+1)!} \ \varepsilon^{M_1 \cdots M_{p-q+1} N_1 \cdots N_{q+1}} Y_{N_1 \cdots N_{q+1}}.$$
 (4)

$$S_{bulk,q} = S_{bulk,p-q}.$$
 (5)

< 日 > < 同 > < 三 > < 三 >

Example: 0-form \Leftrightarrow 3-form in 5 dimensions (p = 3)

 Introduction and Motivation
 p-brane, q-form field, localization

 Localization and Hodge duality for q-form field on brane
 Hodge duality in bulk

 Conclusion
 Motivation

Localization of q-form fields on RS brane (Susskind et al)

The bulk action for a massless q-form field is

$$S_{bulk,q} = \frac{-1}{2(q+1)!} \int_{M} Y^{M_1 M_2 \cdots M_{q+1}} Y_{M_1 M_2 \cdots M_{q+1}}, \tag{6}$$

where $\int_M \equiv \int d^D x \sqrt{-g}$. Susskind et al gave the following ansatz [JHEP 0105 (2001) 031]⁴

so that $Y_{[q+1]} = \hat{Y}_{[q+1]}$. Thus, the brane action reads

$$S_{brane} = \frac{-1}{2(q+1)!} \int_{\partial M} \hat{Y}^{\mu_1 \cdots \mu_{q+1}} \hat{Y}_{\mu_1 \cdots \mu_{q+1}} \int dy e^{2(q+1-(D-1)/2)k|y|}.$$
 (8)

⁴N. Kaloper, E. Silverstein, and L. Susskind, JHEP 0105 (2001) 031 きゅうのの Yu-Xiao Liu (刘玉孝) g-form field and Hodge duality on brane The localization of a q-form field on RS brane requires the convergence of the y integral, or

$$q < \frac{D-3}{2} = \frac{p-1}{2}.$$
 (9)

So the ansatz (7) implies that only 0-forms (scalars) can be localized on the brane in D = 5 dimensions.

The above result claims that scalars can be bound to a RS brane, but higher q-form fields cannot⁵.

This conflicts with the Hodge duality between 0-form and 3-form fields in a 5-dimensional bulk.

⁵N. Kaloper, E. Silverstein, and L. Susskind, Gauge symmetry and localized gravity in M-theory, JHEP 0105 (2001) 031, hep-th/0006192 (10006192) (2001) (20

Resolution (Duff and Liu)

The resolution of the paradox was given by Duff and Liu^6 :

choose different ansatzs for small and large q

$$X_{\mu_{1}\cdots\mu_{q}} = \begin{cases} \hat{X}_{\mu_{1}\cdots\mu_{q}}^{(n)}(x), & q < \frac{D-3}{2} \\ \hat{X}_{\mu_{1}\cdots\mu_{q}}^{(n)}(x)e^{-(2q-D+1)k|y|}, & q \ge \frac{D-3}{2} \end{cases}$$
(10a)
$$X_{\mu_{1}\cdots\mu_{q-1}z} = 0.$$
(10b)

With this choice, Hodge duality on the brane for the massless modes can be kept.

However, the Hodge duality for massive KK modes cannot be obtained.

⁶M. Duff and J.T. Liu, Hodge duality on the brane, PLB=508 (2001)≡381 Ξ つへへ Yu-Xiao Liu (刘玉孝) g-form field and Hodge duality on brane

Motivation

Is there other resolution? For which,

- the KK decomposition of the *q*-form field is suitable for any *q*,
- Hodge duality for the massless modes on the brane is also kept, and more important,
- Hodge duality for massive KK modes can be obtained.

Our resolution:

make a general KK decomposition without gauge choice

$$X_{\mu_{1}\cdots\mu_{q}}(x_{\mu},z) = \sum_{n} \hat{X}_{\mu_{1}\cdots\mu_{q}}^{(n)}(x^{\mu}) \quad U_{1}^{(n)}(z)\mathbf{e}^{a_{1}\mathcal{A}(z)},$$
(11a)
$$X_{\mu_{1}\cdots\mu_{q-1}z}(x_{\mu},z) = \sum_{n} \hat{X}_{\mu_{1}\cdots\mu_{q-1}}^{(n)}(x^{\mu}) \quad U_{2}^{(n)}(z)\mathbf{e}^{a_{2}\mathcal{A}(z)}.$$
(11b)

where $a_1 = a_2 = (2q - p)/2$.

イロト イポト イラト イラ

Introduction and Motivation	
Localiztion and Hodge duality for q -form field on brane	
Conclusion	Massive KK modes and a new duality

Localization and Hodge duality for q-form field on brane

Introduction and Motivation Localization and Hodge duality for q—form field on brane Conclusion Localiztion for *q*-form field on brane Massless KK modes and Hodge duality on the brane Massive KK modes and a new duality

Localization for q-form field on brane

The action for a massless q-form field is

$$S = -\frac{1}{2(q+1)!} \int_{M} Y^{M_1 M_2 \cdots M_{q+1}} Y_{M_1 M_2 \cdots M_{q+1}}, \qquad (12)$$

and the EoMs are

 Introduction and Motivation
 Localiztion for q-form field on brane

 Localiztion and Hodge duality for q-form field on brane
 Massless KK modes and Hodge duality on the brane

 Conclusion
 Massive KK modes and a new duality

Substituting the KK decomposition (11) into the above equaions, we get

$$\frac{1}{\sqrt{-\hat{g}}}\partial_{\mu_{1}}\left(\sqrt{-\hat{g}}\,\,\hat{Y}_{(n)}^{\mu_{1}\mu_{2}...\mu_{q+1}}\right) + \lambda_{1}\hat{X}_{(n)}^{\mu_{2}...\mu_{q+1}} + \lambda_{2}\,\hat{Y}_{(n)}^{\mu_{2}...\mu_{q+1}} = 0,\,(14)$$
$$\partial_{\mu_{1}}\left(\sqrt{-\hat{g}}\,\,\hat{Y}_{(n)}^{\mu_{1}\mu_{2}...\mu_{q}}\right) + \lambda_{3}\partial_{\mu_{1}}\left(\sqrt{-\hat{g}}\,\,\hat{X}_{(n)}^{\mu_{1}\mu_{2}...\mu_{q}}\right) = 0,\,(15)$$

where

-

$$\lambda_{1} = \frac{\mathbf{e}^{-(a_{1}+p-2q)A}}{(q+1) U_{1}^{(n)}} \partial_{z} \left(\mathbf{e}^{(p-2q)A} \partial_{z} (U_{1}^{(n)} \mathbf{e}^{a_{1}A}) \right), \quad (16)$$

$$\lambda_{2} = \frac{q \, \mathbf{e}^{-(a_{1}+p-2q)A}}{(q+1) U_{1}^{(n)}} \partial_{z} \left(U_{2}^{(n)} \, \mathbf{e}^{(a_{2}+p-2q)A} \right), \quad (17)$$

$$\lambda_{3} = \frac{\partial_{z} (U_{1}^{(n)} \, \mathbf{e}^{a_{1}A})}{q \, U_{2}^{(n)} \, \mathbf{e}^{a_{2}A}}. \quad (18)$$

< 日 > < 同 > < 三 > < 三 >

э

Introduction and Motivation
Localiztion and Hodge duality for q-form field on brane
ConclusionLocaliztion for q-form field on brane
Massless KK modes and Hodge duality on the brane
Massive KK modes and a new duality

Substituting the general KK decomposition (11) into the bulk action for the q-form field, we have

$$S_q = \sum_n S_{q,n},\tag{19}$$

where the effective action for the n-level KK modes is

$$S_{q,n} = -\frac{1}{2(q+1)!} \int_{\partial M} \hat{Y}^{\mu_{1}\cdots\mu_{q+1}}_{(n)} \hat{Y}^{(n)}_{\mu_{1}\cdots\mu_{q+1}} \\ -\frac{1}{2q!} \int_{\partial M} \left(\hat{Y}^{\mu_{1}\cdots\mu_{q}}_{(n)} + \frac{m_{n}}{q+1} \hat{X}^{\mu_{1}\cdots\mu_{q}}_{(n)} \right)^{2}.$$
(20)

Here we have assumed that $U_{1,2}^{(n)}(z)$ satisfy the following orthonormality conditions

$$\int dz \ U_1^{(n)} U_1^{(n')} = \delta_{nn'}, \qquad (21a)$$

$$\int dz \ U_2^{(n)} U_2^{(n')} = \frac{(q+1)^2}{q^2} \delta_{nn'}. \qquad (21b)$$

Yu-Xiao Liu (刘玉孝) q-form field and Hodge duality on brane

 Introduction and Motivation
 Localiztion for q-form field on brane

 Localiztion and Hodge duality for q-form field on brane
 Massless KK modes and Hodge duality on the brane

 Conclusion
 Massive KK modes and a new duality

Equations of motion for
$$U_1^{(n)}$$
 and $U_2^{(n)}$ are

$$QQ^{\dagger} U_{1}^{(n)}(z) = m_{n}^{2} U_{1}^{(n)}(z), \qquad (22)$$

$$Q^{\dagger} Q U_{2}^{(n)}(z) = m_{n}^{2} U_{2}^{(n)}(z), \qquad (23)$$

with the operator Q given by $Q = \partial_z + \frac{p-2q}{2}A'(z)$, which indicates that

• $m_n^2 \ge 0$: There is no KK modes with negative eigenvalue. Solutions of the zero modes $U_{1,2}^{(0)}$ ($m_0 = 0$):

$$U_1^{(0)}(z) = N_1 \mathbf{e}^{+(p-2q)A/2}, \qquad (24)$$

$$U_2^{(0)}(z) = N_2 \mathbf{e}^{-(p-2q)A/2}, \qquad (25)$$

イロン 不同 とくほう イロン

Introduction and Motivation Localiztion and Hodge duality for q—form field on brane Conclusion Localiztion for q-form field on brane Massless KK modes and Hodge duality on the brane Massive KK modes and a new duality

Massless KK modes

Their effective action reads

$$S_{q,0} = \int_{\partial M} \left(I_{00}^{(1)} \, \hat{Y}_{(0)}^{\mu_1 \cdots \mu_{q+1}} \hat{Y}_{\mu_1 \cdots \mu_{q+1}}^{(0)} + I_{00}^{(2)} \, \hat{Y}_{(0)}^{\mu_1 \cdots \mu_q} \hat{Y}_{\mu_1 \cdots \mu_q}^{(0)} \right), \ (26)$$

where

$$I_{q,00}^{(1)} = N_1^2 \int dz \ \mathbf{e}^{(p-2q)A}, \qquad (27)$$
$$I_{q,00}^{(2)} = N_2^2 \int dz \ \mathbf{e}^{-(p-2q)A}. \qquad (28)$$

It is clear that only one of the zero modes can be localized on the RS brane, q-form or (q-1)-form zero mode.

For the dual (p-q)-form field $\widetilde{X}_{\nu_1\nu_2\cdots\nu_{p-q}}$, one has

$$\widetilde{l}_{p-q,00}^{(1)} = rac{l_{q,00}^{(2)}}{q+1}, \ \widetilde{l}_{p-q,00}^{(2)} = (p-q+1) \, l_{q,00}^{(1)}$$

So,

if there is a localized q-form zero mode,

there must be a localized (p - q - 1)-form one for its dual field.

If there is a localized (q-1)-form zero mode, there must be a localized (p-q)-form one.

< ロ > < 同 > < 回 > < 回 >

Hodge duality on the brane for massless modes

Substituting the KK decompositions of the q- and (p-q)-form fields into the Hodge duality in the bulk, we obtain the Hodge duality on the brane

$$\begin{split} \sqrt{-\hat{g}} \ & \tilde{\hat{Y}}_{(0)}^{\mu_{1}\cdots\mu_{p-q}}(x^{\mu}) \ = \ \frac{1}{(q+1)!} \ \varepsilon^{\mu_{1}\cdots\mu_{p-q}\nu_{1}\cdots\nu_{q+1}} \ & \hat{Y}_{\nu_{1}\cdots\nu_{q+1}}^{(0)}(x^{\mu}), \\ \sqrt{-\hat{g}} \ & \tilde{\hat{Y}}_{(0)}^{\mu_{1}\cdots\mu_{p-q+1}}(x^{\mu}) \ = \ \frac{1}{q!} \ & \varepsilon^{\mu_{1}\cdots\mu_{p-q+1}\nu_{1}\cdots\nu_{q}} \ & \hat{Y}_{\nu_{1}\cdots\nu_{q}}^{(0)}(x^{\mu}). \end{split}$$

The Hodge duality on the brane just suggests that

- a massless q-form field is dual to a (p-q-1)-form one, or
- a massless (q-1)-form field to a (p-q)-form one.

It can be shown that the corresponding effective actions are the same.

Introduction and Motivation Localiztion and Hodge duality for q—form field on brane Conclusion Localiztion for q-form field on brane Massless KK modes and Hodge duality on the brane Massive KK modes and a new duality

- - E - - E

Massive KK modes and a new duality

Massive KK modes and a new duality

Yu-Xiao Liu (刘玉孝) q-form field and Hodge duality on brane

Introduction and MotivationLocaliztion for q-form field on braneLocaliztion and Hodge duality for q-form field on braneMassless KK modes and Hodge dualityConclusionMassive KK modes and a new duality

Massive KK modes and a new duality

The effective action for each n-level KK modes of the bulk q-form field is

$$S_{q,n} = -\frac{1}{2(q+1)!} \int_{\partial M} \hat{Y}^{\mu_1 \cdots \mu_{q+1}}_{(n)} \hat{Y}^{(n)}_{\mu_1 \cdots \mu_{q+1}} \\ -\frac{1}{2q!} \int_{\partial M} \left(\hat{Y}^{\mu_1 \cdots \mu_q}_{(n)} + \frac{m_n}{q+1} \hat{X}^{\mu_1 \cdots \mu_q}_{(n)} \right)^2,$$

which is for two kinds of KK modes:

- a massive *n*-level *q*-form mode with mass *m_n* and
- a massless *n*-level (q-1)-form mode.

< 日 > < 同 > < 三 > < 三 >

Massive KK modes and a new duality

The effective action for each *n*-level KK modes of the (p-q)-form field is

$$\widetilde{S}_{p-q,n} = -\frac{1}{2(p-q+1)!} \int_{\partial M} \widetilde{\hat{Y}}_{(n)}^{\mu_1\cdots\mu_{p-q+1}} \widetilde{\hat{Y}}_{\mu_1\cdots\mu_{p-q+1}}^{(n)} \\ - \frac{1}{2(p-q)!} \int_{\partial M} \left(\widetilde{\hat{Y}}_{(n)}^{\mu_1\cdots\mu_{p-q}} - \frac{m_n}{p-q+1} \widetilde{\hat{X}}_{(n)}^{\mu_1\cdots\mu_{p-q}} \right)^2$$

The above effective action is also for two kinds of KK modes:

- a massive *n*-level (p q)-form mode with mass m_n and
- a massless *n*-level (p q 1)-form mode.

Massive KK modes and a new duality

Substituting the field decompositions into the bulk Hodge duality (4), we obtain the following dual relation on the brane between two groups of n-level KK modes:

$$\widetilde{\hat{Y}}_{(n)}^{\mu_{1}\cdots\mu_{p-q}} - \frac{m_{n}}{p-q+1} \widetilde{\hat{X}}_{(n)}^{\mu_{1}\cdots\mu_{p-q}} = \frac{\varepsilon^{\mu_{1}\cdots\mu_{p-q}\nu_{1}\cdots\nu_{q+1}}}{(q+1)!\sqrt{-\hat{g}}} \widehat{Y}_{\nu_{1}\cdots\nu_{q+1}}^{(n)}, \quad (30)$$

$$\widetilde{\hat{Y}}_{(n)}^{\mu_{1}\cdots\mu_{p-q+1}} = \frac{\varepsilon^{\mu_{1}\cdots\mu_{p-q+1}\nu_{1}\cdots\nu_{q}}}{q!\sqrt{-\hat{g}}} \Big(\hat{Y}_{\nu_{1}\cdots\nu_{q}}^{(n)} + \frac{m_{n}}{q+1} \hat{X}_{\nu_{1}\cdots\nu_{q}}^{(n)} \Big).$$
(31)

With these relations it can be shown that the following two effective actions are equal:

$$S_{q,n} = \widetilde{S}_{p-q,n}$$
 (32)

伺下 イヨト イヨト

Introduction and Motivation Localiztion and Hodge duality for q-form field on brane Conclusion Localiztion for q-form field on brane Massless KK modes and Hodge duality on the brane Massive KK modes and a new duality

< 日 > < 同 > < 三 > < 三 >

Massive KK modes and a new duality

The duality between two group KK modes:

- one is an *n*-level massive *q*-form KK mode with mass m_n and an *n*-level massless (q-1)-form mode,
- another is an *n*-level (p q)-form mode with the same mass m_n and an *n*-level massless (p q 1)-form mode.

Conclusion

Dualities in the bulk and on the brane

		duality	
bulk	massless	q-form ⇔ (p-q)-form	
brane	zero mode (n=0)	q-form ⇔ (p-q-1)-form or (q-1)-form ⇔ (p-q)-form	
	KK modes (n>0)	q-form (m_n) + (q-1)-form (massless) $\$ $\$ (p-q)-form (m_n) + (p-q-1)-form (massless)	

Thanks for your attention!

< ∃ >

Hodge duality on the brane for massless modes

It can be shown that the corresponding effective actions are the same:

$$S_{q,0} = -\frac{1}{2(q+1)!} \int_{\partial M} \hat{Y}^{\mu_1 \cdots \mu_{q+1}}_{(0)} \hat{Y}^{(0)}_{\mu_1 \cdots \mu_{q+1}},$$

=
$$\widetilde{S}_{p-q-1,0} = -\frac{1}{2(p-q)!} \int_{\partial M} \tilde{Y}^{\mu_1 \cdots \mu_{p-q}}_{(0)} \tilde{Y}^{(0)}_{\mu_1 \cdots \mu_{p-q}},$$

or

- - E - - E

Massive KK modes and a new duality

The effective action for each n-level KK modes of the bulk q-form field is

$$S_{q,n} = -\frac{1}{2(q+1)!} \int_{\partial M} \hat{Y}^{\mu_1 \cdots \mu_{q+1}}_{(n)} \hat{Y}^{(n)}_{\mu_1 \cdots \mu_{q+1}} \\ -\frac{1}{2q!} \int_{\partial M} \left(\hat{Y}^{\mu_1 \cdots \mu_q}_{(n)} + \frac{m_n}{q+1} \hat{X}^{\mu_1 \cdots \mu_q}_{(n)} \right)^2,$$

which is gauge invariant under the following gauge transformation:

$$\hat{X}_{\mu_1\cdots\mu_q}^{(n)} \rightarrow \hat{X}_{\mu_1\cdots\mu_q}^{(n)} + \partial_{[\mu_1}\hat{\Lambda}_{\mu_2\cdots\mu_q]}, \tag{33}$$

$$\hat{X}^{(n)}_{\mu_2\cdots\mu_q} \rightarrow \hat{X}^{(n)}_{\mu_2\cdots\mu_q} - \frac{m_n}{q+1}\hat{\Lambda}_{\mu_2\cdots\mu_q}.$$
(34)

伺 ト イ ヨ ト イ ヨ ト

Introduction and Motivation Localiztion and Hodge duality for q- form field on brane Conclusion

Massive KK modes and a new duality

Then we can fix the gauge by choosing

$$\partial^{\mu_1} \hat{X}^{(n)}_{\mu_1 \cdots \mu_q} = 0. \tag{35}$$

The above effective action is for two kinds of KK modes:

- a massive *n*-level *q*-form mode with mass m_n and
- a massless *n*-level (q-1)-form mode.

(

Massive KK modes and a new duality

On the other hand, we find that the effective potentials of the q-form and its dual (p - q)-form fields have the following relationships:

$$\widetilde{V}_{p-q,1}(z) = V_{q,2}(z), \quad \widetilde{V}_{p-q,2}(z) = V_{q,1}(z).$$
 (36)

And there are some relationships between the KK modes:

$$\widetilde{U}_{1}^{(n)} = \frac{q}{q+1}U_{2}^{(n)},$$
 (37a)

$$\widetilde{U}_{2}^{(n)} = \frac{p-q+1}{p-q} U_{1}^{(n)}.$$
 (37b)

伺 ト イ ヨ ト イ ヨ ト